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Introduction

Current sequencing-based experimental techniques like RN A-seq and ChIP-Seq generate a wealth of data
which can be aligned to the genome of the targeted organism. Yet the integrated analysis of multiple
such datasets requires methods for their automated and efficient statistical analysis. One major goal is to
annotate the genome, i.e., to cluster genomic positions into functional groups based on the observations
made at these positions. One might, e.g., want to dissect the process of RNA trancription into distinct
phases characterized by the presence of different protein complexes that change their composition as
the RNA Polymerase moves along the DNA. Ideally, such a clustering accounts for the dependency of
observations induced by the linear structure of the DNA and the processes associated to it. Hidden
Markov models (HMMs) have been used extensively to partition the genome into discrete functional
states that can be interpreted as DNA-associated protein complexes. They have been used to infer
chromatin states, and annotate enhancers, promoters and transcribed and quiescent regions in human
[TDNS07, EK12] and fly [FvBB*10].

Current HMM-based approaches ignore the fact that DNA-related processes may occur in forward or
reverse direction. [KGP14] use time-reversible Markov chains to alleviate this drawback. Still, this
model is not able to infer the diretionality of DNA-related processes, nor do they properly integrate
strand specific (e.g., RNA expression) with non-strand-specific (e.g., ChIP) data. In order to address
these points, our present contribution highlights the bidirectional hidden Markov model (bdHMM)
introduced in [ZLCT14].

Results

The main idea of the bdHMM is to have so-called twin states, one for each strand and genomic state.
Transitions between twin states are coupled by a generalized time-reversibility condition, which replaces
the ordinary time-reversibility constraint for reversible HMMs (see Methods for a precise definition).
bdHMMs can identify forward and reverse directed states by taking into account directional information
contained in each single observation. We derived an efficient analog of the Baum-Welch expectation-
maximization (EM) algorithm for bdHMM parameter learning. The bdHMM model along with the EM
algorithm is implemented in the open source R/Bioconductor package STAN [ZGT14]. STAN allows the
modeling of multivariate Gaussian, Poisson, negative binomial, and multinomial emission distributions
and arbitrary independent combinations thereof. It thereby provides a general and flexible framework
for obtaining a directed functional state annotation from genomics data.

We applied the bdHMM to a combined RNA transcription and ChIP data set of RNA Polymerase II-
associated general transcription factors in yeast. The bdHMM annotated the genome with transcription
states (Figure 1), which were characterized by different compositions of the Polymerase II complex.
Searching this sequence of states with regular expressions recovers the majority of transcribed loci. We
reveal gene-specific variations in the yeast transcription cycle and we find an alternative transcription
termination pathway for antisense transcripts. Application of the bdHMM to chromatin modification
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Figure 1: De novo transcript annotation by the bdHMM. Top panels: The data which was used to train the
bdHMM include termination factors Pcfll (pink) and Nrdl (blue), initiation factor TFIIB (ocre), the RNA
Polymerase II subunit Rpb3 (green), Nucleosomes (orange), and strand-specific RNA-Seq expression data in
wild type cells (dark and light red) and cells deficient for the nuclear exosome (black and grey). Middle panel:
The transcript annotation by [XWG'09], which was not known to the bdHMM, was used as a gold standard.
Bottom panel: Viterbi path derived from the bdHMM. Different colors indicate different states. States above
(below) the baseline indicate reverse (forward) states, the other states are undirected. The grey area highlights
a novel SUT (Stable unannotated transcript, a stable non-coding RNA) region predicted to be expressed on
the 4 strand by the bdHMM yet not captured by former annotations based on the wild-type RNA levels alone.
(Modified after [ZLC114])

data in human T cells provides evidence for existence of directed chromatin state patterns around
transcribed regions in the human genome.

Methods

A hidden Markov model is a tuple 6 = (K, 7, A, D, ¥) such that K is a finite state set, 7 = (m;);ex is
the initial state distribution, A = (a;;); jex is a K x K transition matrix, and ¥ = {¢;; i € K} is a set
of probability distributions on the observation space D. An HMM defines a probability distribution on
a sequence of observations O = (oy, ...,or). Each observation o; is emitted by a corresponding hidden
(unobserved) state variable s; which can assume values in K. The value of s; determines the probability
of observing o; by Pr(o: | st) = ts,(0:). The hidden variables are assumed to form a homogenous
Markov chain S = (s1, ..., s7) with time-independent transition probabilities Pr(s; = j | s;—1 = 1) = ayj,
1,7 € K, t=2,..,T, and with initial state distribution Pr(s; =) = m;, ¢ € K. The full likelihood of an
HMM is

!
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Given a sequence of observations O, the Viterbi algorithm can be used to find the maximum likelihood
hidden state sequence S, thus assigning to each position a state in /. This Viterbi path is commonly



used as annotation of the genome (Figure 2a,b). The main idea of the bdHMM is to split the state space
K into undirected states, and pairs of directed (forward and reverse) twin states. Symmetry conditions
couple the emission and transition probabilities of twin states in a meaningful way (Figure 2a,c).

Definition. A bidirectional hidden Markov model (bdHMM) is a tuple 6 = ((K, k), 7, A, (D,9), ¥)
such that (K, 7, A, D, ¥) is an HMM. Additionally, & : K — K,k + k and 6 : D — D, o +> 6 are in-
volutions (k2 = id, 62 = id). The involustion x defines the directed twin states by mapping a state j
to its direction-reversed twin state j, while leaving undirected states fixed. The involution § maps an

observation o to 0 by swapping strand-specific observations. Finally, the following symmetry conditions
hold:

1. Generalized detailed balance relation: The transition matrix A and the initial state distribution

7 satisfy
miai; = ;a5 , i,j €K (1)
2. Initiation symmetry: The initial state distributions satisfies
m=m; ,1€K (2)
3. Observation symmetry: U satisfies
Gio) = ¥i(0) , i€k, 0€D (3)

Why did we specifically choose conditions (1)-(3) as the defining properties of a bdHMM? To motivate
our definition, we give an alternative characterization of the bdHMM in terms of a biologically motivated
condition. It is natural to require that a directionality-aware HMM marginally cannot distinguish
between a forward transition ¢, j from position ¢ — 1 to ¢ when observing z, y at the corresponding
positions, and the reverse transition j, ¢ at position ¢ — 1 to t when observing ¢, = at the corresponding
positions (Figure 2d). In other words, we require that

Pr(si_1 =i,8: = j,00—1 = 2,0, = y; 0) = Pr(s4—1 = j, 8t = i,0i—1 = Y, 01 = T; 0) (4)

holds for all 7,5 € K, x,y € D, t = 1,2,.... Under very mild additional assumptions that are always
met in practice, this condition characterizes a bdHMM:

Theorem. Let 0 = ((K,k),m, A, (D,6),¥) be a tuple with involutions « : K — I, § : D — D, such
that (IC, 7, A, D, V) is an HMM. Let each ¢; € ¥ be non-constant, and and let A be irreducible, i.e.,
there exists some positive integer 7 such that (A");; > 0 for all ¢, j € IC. Then, 0 is a bdHMM if and
only if Condition (4) holds.

Discussion

Bidirectional Hidden Markov Models (bdHMMs), are a novel method for de novo and unbiased in-
ference of directed genomic states from genome-wide profiling data. It allows for the integration of
strand-specific data such as RNA expression together with non-strand-specific data such as ChIP occu-
pancy. It can jointly model nominal, continuous and count data by a variety of emission distributions.
The open-source package STAN provides a fast, multiprocessing implementation that can process the
human chromatin data set in less than one day using a 20 CPU compute cluster. The most significant
advance of bdHMM analysis over previous methods is its potential to de novo identify characteristic
sequences (patterns) of directed states on the genome. The explicit modeling of forward and reverse
states detected an alternative transcription termination pathway which is primarily associated with an-
tisense transcripts. We find that directed patterns of histone modifications are ordered according to the
direction of RNA transcription. A bdHMM has essentially the same number of parameters as a compa-
rable standard HMM, and its learning is done at the same speed. Thus, the inference of directionality
is without additional costs. We therefore expect the bdHMM to have a broad range of applications in
genomics and epigenomics.
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Figure 2: Toy example of a bdHMM model. (a) Simulated occupancy signal (1st track from the top) for a
putative factor with a low level (centered at 0) in untranscribed regions (state U), an intermediate level in 5’
part of genes (state E), and a high level in 3’ part of genes (state L). Arrows (2nd track) depict boundaries
and orientation of transcription. Unlike standard HMMSs (3rd track) bdHMM (4th track) infer strands (+ or
-) to expressed states (E, L). (b) HMM transition graph. Because orientation of transcription is not modeled
by standard HMMs, the spurious reverse transitions (E= U, L= E, and U= L) are as likely as the correctly
oriented transitions (U= E, E= L, and L=- U). (¢) bdHMM transition graph. In contrast to HMMs, bdHMMs
explicitly model strand-specific expression states (E*/E~ and L*/L™), which results in the correct inference
of oriented transitions. (d) Illustration of condition (4), the defining property of a bdHMM. (Modified after
[Zacher et al. 2014])
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