Varying levels of complexity in transcription factor binding motifs
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Introduction

Transcriptional regulation mediated by transcription factors (TFs) binding to genomic DNA is one of the
fundamental regulatory steps of gene expression. Over the last years, the importance of dependencies
between different positions of transcription factor binding sites (TFBSs) has been debated controver-
sially [BT09a, ZS11, M™11]. Several publications argue that TF-DNA binding energies can often be
captured by simple weight matrices [ZS11, W' 13], whereas others find that considering dependencies
increases the performance of TFBS predictions [M*13, MW13, K13, GT13].

Here [KG15], we aim at providing new insights into the importance of dependencies in transcription
factor binding sites and investigate the diverse sources of such dependencies on in-vitro genomic context
protein binding microarray (gcPBM) data [M*13] and in-vivo ChIP-seq data from ENCODE [ENC12].
For this purpose, we propose a new class of probabilistic models that allow for learning dependencies
between binding site positions discriminatively, which we call sparse local inhomogeneous mizture (Slim)
models. For representing dependencies graphically, we develop a new visualization technique, which we
call dependency logos.

Sparse local inhomogeneous Markov models

Determining a probabilistic model requires the selection of features and the estimation of correspond-
ing model parameters. Typically, feature selection is performed in discrete space (features are selected
or not), while parameter estimation is performed in continuous space. For parameter estimation, dis-
criminative learning principles have been proven superior over generative ones in many areas including
motif discovery [Baill, HT11, GT13], but typically demand for time-consuming numerical optimization,
which makes them intractable for traditional feature selection that requires a new optimization for each
(promising) feature subset.

To overcome this situation, we propose Slim models that use the alternative concept of soft feature
selection. More specifically, the probability of a nucleotide at a certain position of a binding site may
depend on any nucleotide observed at a preceding position. Since it is unknown beforehand, which
of these putative dependencies are important, the Slim model handles this information as a hidden
variable resulting in a local mixture model. During the learning process, the parameters of this mixture
model are adapted, such that a single position or a small subset of preceding positions obtains a large
weight, whereas the others are down-weighted, yielding a soft feature selection.

Dependency logos

We present dependency logos as a new way of visualizing dependency structures within binding sites. In
contrast to sequence logos, dependency logos make dependencies between binding site positions visually
perceptible. In contrast to previous approaches, dependency logos are model-free and only require a set
of aligned sequences, e.g., predicted binding sites, and, optionally, associated weights as input.

Dependency logos make dependencies between different motif positions visually perceptible by three



key ideas. First, dependency logos are directly based on binding sites instead of abstract binding
motifs, e.g., mononucleotide distributions of PWM models. Second, we cluster binding sites by their
nucleotides at those positions showing the strongest dependencies to other positions. If, for instance,
position 7 shows the strongest dependencies to other positions and, of those, the dependency between
position j and i is the strongest, we create at most 16 clusters according to the combinations of the two
nucleotides present at positions j and ¢. This procedure may be repeated recursively for each of the
clusters (e.g., those sequences with a TC at position j and ¢). Third, we visualize each cluster as one
row of colored boxes using the familiar colors of sequence logos and with height proportional to cluster
size. If more than one nucleotide is present at a certain binding site position in a cluster, we mix the
colors representing those nucleotides and set their saturation based on information content in analogy
to the height of stacks in sequence logos.

Results

We demonstrate that Slim models in combination with a discriminative learning principle yield an
overall improved performance compared to state of the art tools and compared to other probabilistic
models including position weight matrix models on gcPBM and 63 ChIP-seq data for human transcrip-
tion factors. Scrutinizing the results of the individual data sets, we find several cases where a PWM
model neglecting dependencies between binding site positions already yields a decent prediction perfor-
mance. However, for a considerable fraction of data sets, the improvement gained by models capturing
dependencies between adjacent and non-adjacent positions is substantial.

Subsequently, we focus on ChIP-seq data sets for those transcription factors with the greatest improve-
ments in prediction performance using Slim models and further investigate their dependency structures
using dependency logos. In Figure 1, we show three examples of dependency logos based on predictions
of Slim models. For Nfe2, we observe heterogeneities caused by two different, mixed motifs, where
the first is an E-box-like (CACGTG) motif and the second is the expected Nfe2 motif with consensus
TGCTGAGTCAY. For c-Jun, we find a flexible spacer between the two half sites with consensus TGA
and TCA that has also been reported by Badis et al. [B*09a] for Jundm2 in mouse using PBM data and
by Mathelier and Wasserman [MW13] using TFFMs on ChIP-seq data for human Jund. For Nrsf, we
find that only the top-scoring binding sites cover the complete Nrsf motif, whereas the majority of se-
quences under the ChIP-seq peaks (68%) contain only the left half site (CTGTCC). While a dependency
of nucleotide conservation on ChIP enrichment of the Nrsf motif has been reported before [BT09b], the
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Figure 1: Dependency logos of binding sites predicted by the Slim model for ChIP-seq data sets.



clear distinction between two modes of Nrsf binding discovered using the Slim model is novel and might
be related to the diverse complexes of Nrsf with other factors [Y*+11].

In summary, we find that binding landscapes of transcription factors are highly complex and diverse,
including secondary or multiple motifs, partial motifs, flexible binding modes, or dependencies between
neighboring and non-neighboring positions. Some of these cases could also be handled by specialized
models based on a-priori expert knowledge, e.g., spaced PWM models for c-Jun or hidden Markov
model-like approaches for Nrsf. The strength of the proposed Slim models is their flexibility to adjust
to all these dependency structures without requiring a-priori knowledge of dependency structures, while
dependency logos allow for dissecting dependency structures a-posteriori by visual inspection.

Talk outline

In the first part of the talk, we will explain Slim models on a conceptual level. While Slim models have
been designed for modeling DNA motifs, the general concept of soft feature selection in a local mixture
model might be applicable to other bioinformatics problems as well. In the second part, we will focus
on the results obtained on ChIP-seq data. We will briefly explain dependency logos and use these for
visualizing several, representative dependency structures detected in transcription factor binding sites.
Finally, we will show that dependency logos may also help to visually detect dependencies in other
sequence data.
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