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Introduction

The application of next generation sequencing technologies (NGS) to sequencing of RNA (RNA-seq)
provides novel opportunities for the analysis of transcriptomes beyond the simple quantification of gene
expression. In particular, the combination of RNA-seq with powerful techniques for selecting specific
types of RNA (e.g. newly transcribed RNA using 4sU-tagging [DRR+08] or actively translated RNA
using ribosome profiling [IGNW09]) now allows quantification of real-time changes in RNA synthesis
[MLW+12], RNA processing [WBB+12], and translation [IGNW09].

A further interesting application arises from the fact that RNA-seq protocols do not distinguish between
RNA from different species. Thus, in case of infections by viruses or bacteria, RNA from the infecting
species will automatically be sequenced together with the host RNA. Originally, this application has
been proposed in a thought experiment by Westermann et al. [WGV12] and denoted as dual RNA-seq,
although it is not limited to just one infecting species and the host. For instance, Castellarin et al.
[CWF+12] identified a number of microbes in RNA-seq data of colorectal carcinoma and normal tis-
sue samples. To date, dual RNA-seq has been used to annotate and quantify the transcriptome and
translatome of several herpesviruses, which are large DNA viruses that replicate in the nucleus. This
includes murine and human cytomegalovirus (MCMV and HCMV) [MLW+12, SGWM+12], Kaposi’s
sarcoma-associated herpesvirus (KSHV) [AWSG+14], and human herpesvirus 1 (HSV-1) [REL+15].

In this presentation, I will provide an overview on methods developed in my group for the analysis of
RNA-seq data of infected cells, in particular for the analysis of transcriptional and translational activity,
transcription termination and RNA processing during lytic HSV-1 infection [REL+15]. This includes
methods for parallel RNA-seq mapping against several read sources [BCZF12, BCZF13, BKC+15] as
well as quantification of transcription termination and polyadenylation sites in both host and virus.

Parallel RNA-seq mapping to virus and host

One major challenge in both “standard” and dual RNA-seq is the identification of the transcriptomic
origin of sequencing reads (mapping). Accordingly, a number of software programs have been developed
for this task, e.g. TopHat [TPS09] or STAR [DDS+13]. However, these approaches to not directly
support mapping of reads from multiple species or other read sources (e.g. rRNA sequences, which are
not included in the human reference genome). Although additional sequences may be included into
the mapping index, this either requires reindexing all reference sequences including the host genome
for each new virus investigated or always mapping against all microbe and virus genomes. In addition,
non-unique alignments are generally not resolved, which is a problem for rRNA reads which also map to
rRNA pseudogenes in the host genome or a meta-transcriptomic screen against all known microbe and
virus genomes. To address this problem, we recently extended our context-based RNA-seq mapping
approach ContextMap [BCZF12] to allow parallel mapping against different read sources resulting in a
unique mapping of each read to only one species/read source [BCZF13].

The parallel mapping approach could be integrated easily into ContextMap as even in the original im-
plementation initial read alignments are clustered into so-called contexts that are treated independently
until the last integrating step. Essentially a context represents a set of reads originating from the same
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Figure 1: Parallel mapping against host, virus and bacterial genomes as well as rRNA is realized in ContextMap
by (1) performing initial alignments against indices for several species/read sources to define contexts, (2)
identifying best alignments for each read independently within each context and (3) resolving the resulting
multiple alignments in the final integrating step.

stretch of the genome and likely corresponding to transcripts of the same or overlapping genes. Multiple
alignments of reads to different contexts are allowed, which are then resolved in the last step. Thus,
parallel mapping to multiple species could be included in ContextMap in a straightforward way by
aligning against multiple sequence indices in the initial alignment step to recover contexts for different
species (Figure 1). This approach is also included in the recent ContextMap 2 release, which allows the
use of alternative short read alignment programs and can recover reads containing multiple exon-exon
junctions or insertions or deletions [BKC+15].

Wide-spread disruption of host transcription termination in HSV-1

Parallel analysis of host and virus transcription and translation can lead to highly interesting insights not
only into the infection process itself but also into important biological processes. This was illustrated by
our recent study on HSV-1 lytic infection [REL+15], which established HSV-1 infection as an interesting
model system to study transcription termination. HSV-1 is an important human pathogen that causes
both common cold sores as well as life-threatening infections and rapidly shuts down host gene expression
during lytic infection. In our study, we combined sequencing of 4-thiouridine (4sU)-labeled newly
transcribed RNA (4sU-RNA) and ribosome profiling to study both host and virus transcription and
translation during the full course of HSV-1 lytic infection. 4sU-labeling was performed in one-hour
intervals during the first 8 hours of infection and ribosome profiling was performed at 0, 1, 2, 4, 6 and
8h post infection (p.i.).

Surprisingly, we found that the transcriptional up-regulation of 659 cellular genes was not matched by
a respective increase in translational activity. Only 33 (0.34%) of translated genes showed increased
translational activity at 8h p.i. When analyzing genes that were transcriptionally induced but not
translated, we observed massive transcriptional activity upstream of their 5’-ends at late times of
infection originating from neighboring upstream genes (Figure 2). This suggested that the transcription
termination and cleavage machinery did no longer recognize or properly function at the termination
signals of upstream genes, resulting in transcription into downstream regions by >100,000nt (denoted
as ‘read-out’). We found that read-out affected the majority of cellular genes and was correlated with
a higher prevalence of non-canconical polyadenylation [poly(A)] signals. Although this indicated that
non-canonical and likely weaker poly(A) signals were more strongly affected by disrupted transcription
termination, the majority of genes with read-out still had the canonical AAUAAA poly(A) signal. Thus,
poly(A) signal strength is certainly not the only factor influencing the extent of read-out.

Late in infection, read-out commonly extended over thousands of nucleotides into downstream genes
(denoted as ‘read-in’). At least 32% of genes showed >15% read-in at 8h p.i. and the extent of read-in
depended on the distance to the next upstream gene. For genes with low or no transcription in uninfected
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Figure 2: Disruption of transcription termination of the SRSF6 gene and read-in into the downstream SGK2 and
IFT52 genes. The top two rows show transcriptional activity (4sU-RNA) and the bottom two rows translational
activity (ribosome profiling, RP) in uninfected cells and at 8h p.i., respectively.

cells, read-in often exceeded endogenous transcript level, resulting in seeming ’induction’. This explained
the discrepancy between transcriptional and translational induction. Furthermore, HSV-1 infection
induced aberrant splicing events, which were enriched among genes with high read-out. Thus, splicing
was already affected upstream of poly(A) sites suffering from read-out. Interestingly, 44% of the induced
splice junctions were novel and 11% of these represented intergenic splicing between two neighboring
genes connected by read-out and subsequent read-in. These intergenic splicing events thus conclusively
demonstrated that disruption of transcription termination resulted in large RNA molecules spanning
two or more cellular genes.

To investigate whether disruption of transcription termination was specific to the host or also affected
HSV-1 genes, we identified reads containing part of a poly(A) tail, i.e. reads for which a partial alignment
of the read start to the host or HSV-1 genome was followed by a stretch of A’s. As coverage of the
poly(A) tails was generally at least two orders of magnitudes lower than of the corresponding transcripts,
only few poly(A) reads were recovered for the host genome. Coverage of HSV-1 transcripts, however,
was in the order of tens-of-thousands of reads per genome position, allowing us to quantify poly(A)
site usage of all but one viral gene (see Figure 3 for the UL39-50 gene segment). Viral poly(A) sites
were almost exclusively preceded by an AAUAAA poly(A) signal. To investigate changes in poly(A)
site usage in the whole HSV-1 genome throughout infection, we correlated gene expression upstream
of each poly(A) site with the number of identified poly(A)-tailed reads. For 80% of poly(A) sites, this
correlation was >0.9, which argued against regulated poly(A) site usage in HSV-1 infection and showed
that disruption of transcription termination was host-specific.
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Figure 3: Poly(A) tail read coverage in 4sU-RNA for the UL39-50 gene segment (red = positive strand, blue =
negative strand).
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